EFFECT OF SKEWED HEAT GENERATION AND
NONUNIFORM HEAT TRANSFER AT THE
SURFACE OF A HEAT EMITTING ROD ON ITS
TEMPERATURE FIELD

L. N. Polyanin -UDC 536.242:621.039.517

Analytical solutions are obtained to problems concerning the temperature field of heat emit-
ting rods with skewed sectional heat generation profiles and with an angular dependence of the
heat transfer coefficient.

When considering the heat transfer at rod bundles in a turbulent stream of fluid (in the ducts of
nuclear reactors, for instance), one often encounters the problem of determining the effects of a possibly
skewed heat generation profile along an individual heat emitting element. Furthermore, the rod surface
may also be subjected to nonuniform conditions of heat transfer to the ambient fluid (heat carrier), espe-
cially when surface boiling occurs around a part only of its perimeter.

In order to estimate the effect of a skewed heat generation profile and of zonal surface boiling, the
author considers here each factor separately.

1. Effect of a Skewed Heat Generation Profile. As an example, we will consider a "plane" skew
across the rod section.

With the dimensionless quantities
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where k denotes the coefficient of heat transfer from the rod surface fo the heat carrier and the tempera-
ture of the latter is taken as the reference, we now have the equation of heat conduction written in polar
coordinates
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Multiplying the original equation (1.1) by cos pg and integrating the result from 0 to 7 (a finite cosine

transformation), with (1.3) taken into account, we obtain for the spectrum of temperature
I
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the following equation:
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Considering that the solution is bounded at the center of (1.4), we then find that
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The solution t(p, ¢) is determined in terms of the Gp(p) spectrum through a series [1}:
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Inserting expression (1.7) into the boundary condition (1.2), we find the values of the constants Cp:
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In this way, the sought solution will appear as
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The difference between maximum and minimum thermal flux from the surface of a heat emitting ele-
ment (with the dimensionless mean thermal flux dg = 2) will be
Bi
1-Bi’ (1.10)
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while the difference between maximum and minimum surface temperature of a heat emitting element will
be
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The point (p*, ¢*) of a heat emitting element which is at the maximum temperature can be found by a
simultaneous solution of equations 8t/8p = 0 and 9t/9¢ = 0, which will yield its coordinates:
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The expression for the maximum temperature t* will be
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i.e., a "plane" skew of the heat source (with the heat generation per unit rod length maintained) lowers the
maximum temperature of a heat emitting element by the amount 84/128((3 + Bi)/(1 + Bi)S,
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For a numerical evaluation of these results, let us consider a heat emitting element 6 mm in diam-
eter (ry = 3 mm) with a 6 = 0.3 mm thick shell. Assuming the thermal conductivity of the rod material to
be A = 35 W/m - °C and that of the shell material to be Agh = 20 W/m -°C, with a heat transfer coefficient
at the wall surface a = 35,000 W/m® - °C and & = (qy'**~q,)/q, = 0.2, we obtain Bi ~ 2,00, AqPa%/g
~ 0.133, Atg'"" ~ 0.133, and p* ~ 0.083.

The change in the maximum rod temperature is negligible and only about 0.35.107¢,

2, Effect of a Nonuniform Heat Transfer Coefficient around the Perimeter of a Heat Emitting Ele-
ment. We will now consider the Biot number, which characterizes the heat transfer from a rod to the am-~
bient medium, and its angular variation in the form

Bi(g) = Bi— ABI
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where
Bi= —; (Bim_t- Bimin), A Bi — Bimex_Bjmin,

In the case of a heat emitting element with a uniform cross section, we have for the temperature
spectrum 6p(p) the following equation:
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Conditions (1.3) and (1.4) yield
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Inserting the solution
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into the boundary condition (1.2), with (2.1) also taken into account, we obtain the following system of equa-
tions for the coefficients Cp (8 = ABi/2):
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These eguations for Cp, beginning with the fourth one, constitute a recurrent series and their solu-
tion is a linear combination of cylindrical Bessel and Neumann functions of the p-th order:
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Retaining only a finite number of terms in the sum of series (2.4), and letting Cp = 0, we obtain an
equation which relates coefficients ¢ and b:
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With a sufficiently large p = P one may use the "tangents approximation" for functions Jp(B) and
Np(B). Letting p/B = chyu, we have {2]
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Thus, for large values of p we have the asymptotic proportionality
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Consequently, as p tends toward infinity, b/a approaches zero fast. Therefore,

Cp (ﬁ) = aJp ®), p=2 34, ... (2.6)
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Letting p = 2 and p = 3 in (2.6), we will obtain the values of coefficients C,y and C3, respectively, in
both the second and the third equation of system (2.5) accurately down to the constant a, whereupon the first
three equations of system (2.5) will yield the values of the unknowns a, Cp, and Cy:
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As is evident according to (2.4), the expression for the thermal flux from the surface of a heat emit-
ting element becomes
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The maximum skew of temperature around the rod perimeter is
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where Hy(B) and Hy(B) are Struve functions (2], we may replace (2,11) and (2.12) by
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For the preceding sam'p.le with Bi™&X = 4 (which corresponds to a heat transfer coefficient o™M2%
~ 150,000 W/m?.°C) and Bi™I% = 2, we have

Agmar = 0.32; Agimax = (0,33,

In order to convert to dimensional values of thermal flux and temperature, it is necessary to bring
in the equalities

— 5 2
A N L
Qs—‘4qs»T‘ 4;\‘7"‘
We note that, letting C; = C, =...= 0 (approximate solution) in Eq. (2.5}, we have
Bi
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which yields
Agmax — Afmax = 0,35.

NOTATION
Ty is the radius of a cylindrical heat emitting rod;
A is the thermal conductivity of the rod material;
k is the coefficient of heat transfer from the rod surface to the ambient medium;
Bi is the Biot number;
dy is the mean emitted thermal power density in a rod;
t is the dimensionless temperature;
T is the actual temperature;
ds is the dimensionless thermal flux density at the rod surface;
Qg is the actual thermal flux density at the rod surface;
p and @ are the polar coordinates;
0 is the cosine transform of the temperature;
€ is the relative skew of the sectional heat generation profile;
Ip is the cylindrical Bessel function of the p-th order;
Np is the cylindrical Neumann function of the p-th order;

Hpand H; are Struve functions.
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